168 research outputs found

    Evaluation of soil moisture downscaling using a simple thermal-based proxy - the REMEDHUS network (Spain) example

    No full text
    Soil moisture retrieved from satellite microwave remote sensing normally has spatial resolution on the order of tens of kilometers, which are too coarse for many regional hydrological applications such as agriculture monitoring and drought prediction. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of the simple vegetation temperature condition index (VTCI) downscaling scheme over a dense soil moisture observational network (REMEDHUS) in Spain. First, the optimized VTCI was determined through sensitivity analyses of VTCI to surface temperature, vegetation index, cloud, topography, and land cover heterogeneity, using data from Moderate Resolution Imaging Spectroradiometer∼(MODIS) and MSG SEVIRI (METEOSAT Second Generation-Spinning Enhanced Visible and Infrared Imager). Then the downscaling scheme was applied to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture observations, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintaining the accuracy of CCI soil moisture. The accuracy level is comparable to other downscaling methods that were also validated against the REMEDHUS network. Furthermore, slightly better performance of MSG SEVIRI over MODIS was observed, which suggests the high potential of applying a geostationary satellite for downscaling soil moisture in the future. Overall, considering the simplicity, limited data requirements and comparable accuracy level to other complex methods, the VTCI downscaling method can facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture. © 2015 Author(s)

    Photoactivated chemotherapy (PACT) : the potential of excited-state d-block metals in medicine

    Get PDF
    The fields of phototherapy and of inorganic chemotherapy both have long histories. Inorganic photoactivated chemotherapy (PACT) offers both temporal and spatial control over drug activation and has remarkable potential for the treatment of cancer. Following photoexcitation, a number of different decay pathways (both photophysical and photochemical) are available to a metal complex. These pathways can result in radiative energy release, loss of ligands or transfer of energy to another species, such as triplet oxygen. We discuss the features which need to be considered when developing a metal-based anticancer drug, and the common mechanisms by which the current complexes are believed to operate. We then provide a comprehensive overview of PACT developments for complexes of the different d-block metals for the treatment of cancer, detailing the more established areas concerning Ti, V, Cr, Mn, Re, Fe, Ru, Os, Co, Rh, Pt, and Cu and also highlighting areas where there is potential for greater exploration. Nanoparticles (Ag, Au) and quantum dots (Cd) are also discussed for their photothermal destructive potential. We also discuss the potential held in particular by mixed-metal systems and Ru complexes

    NOD2, RIP2 and IRF5 Play a Critical Role in the Type I Interferon Response to Mycobacterium tuberculosis

    Get PDF
    While the recognition of microbial infection often occurs at the cell surface via Toll-like receptors, the cytosol of the cell is also under surveillance for microbial products that breach the cell membrane. An important outcome of cytosolic recognition is the induction of IFNα and IFNβ, which are critical mediators of immunity against both bacteria and viruses. Like many intracellular pathogens, a significant fraction of the transcriptional response to Mycobacterium tuberculosis infection depends on these type I interferons, but the recognition pathways responsible remain elusive. In this work, we demonstrate that intraphagosomal M. tuberculosis stimulates the cytosolic Nod2 pathway that responds to bacterial peptidoglycan, and this event requires membrane damage that is actively inflicted by the bacterium. Unexpectedly, this recognition triggers the expression of type I interferons in a Tbk1- and Irf5-dependent manner. This response is only partially impaired by the loss of Irf3 and therefore, differs fundamentally from those stimulated by bacterial DNA, which depend entirely on this transcription factor. This difference appears to result from the unusual peptidoglycan produced by mycobacteria, which we show is a uniquely potent agonist of the Nod2/Rip2/Irf5 pathway. Thus, the Nod2 system is specialized to recognize bacteria that actively perturb host membranes and is remarkably sensitive to mycobacteria, perhaps reflecting the strong evolutionary pressure exerted by these pathogens on the mammalian immune system

    Observations of a mass occurrene of Macoma balthica larvae in midsummer

    Get PDF
    In 1995 the seasonal development of concentrations of both phytoplankton and larvae of the bivalve Macoma balthica was studied in the coastal zone behind the back-barrier island of Spiekeroog (German Wadden Sea). In July=August larvaereached maximum concentrations of about 1000 to 4200 ind.

    Spatial downscaling of satellite soil moisture data using a temperature vegetation dryness index

    No full text
    Microwave remote sensing has been largely applied to retrieve soil moisture (SM) from active and passive sensors. The obvious advantage of microwave sensors is that SM can be obtained regardless of atmospheric conditions. However, existing global SM products only provide observations at coarse spatial resolutions, which often hamper their application in regional hydrological studies. On the other hand, the vegetation temperature condition index (VTCI) has been widely used to monitor the SM status. It is based on high-spatial-resolution visible and infrared satellite observations. The aim of this study is to develop a simple and efficient downscaling approach for estimating accurate SM at higher spatial resolution. The VTCI calculated from the Moderate Resolution Imaging Spectroradiometer is used to downscale the coarse-resolution SM product that has been developed under the framework of the European Space Agency's Climate Change Initiative (CCI) projects. The original and downscaled SM estimates are further validated against the in situ SM observations collected in the Yunnan province (southwest China). It is found that the accuracy level of CCI SM is similar to the results from previously published validation studies. The downscaled SM can maintain the accuracy of CCI SM and, at the same time, present more spatial details, demonstrating the feasibility of the proposed method. Overall, the notable advantages of the proposed method are simplicity, limited data requirements and purely relying on satellite measurements, and comparable accuracy level to other complex downscaling schemes. It will facilitate local hydrological applications, particularly in data-scarce regions, where the above-listed characteristics are important and useful. © 2015 IEEE

    Synthesis, Structures, and CO Releasing Properties of two Tricarbonyl Manganese(I) Complexes

    No full text
    [MnBr(CO)5] reacts with one equivalent each of 1, 3, 5-triaza-7-phosphaadamantane (PTA) and sodium diethyldithiocarbamate to afford the yellow MnI complex fac-[Mn(S2CNEt2)(PTA)(CO)3]. Similarly, the same MnI precursor reacts with the sodium salt ofL-histidine to give the tricarbonyl manganese(I) complex fac-[Mn(his)(CO)3] in good yield as a yellow solid. Both compounds were spectroscopically and structurally characterised. The histidinato complex is soluble in water and its aqueous solutions are stable for more than 24 h. The CO releasing properties of the histidinato complex were studied with the myoglobin assay and establish this compound as a novel PhotoCORM, which liberates one of the three carbonyl ligands upon irradiation

    Ministry and Ordination According to Reformed Theology

    No full text

    Messung der aderhautdurchblutung mit der calorimeter-pille

    No full text

    Hooker's Doctrine of the Eucharist

    No full text
    corecore